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Abstract. The coupled-cluster method is applied to the spin.: triangular-lattice anisotropic 
antiferromagnet. a noncollinear and frustrated magnet with an anisotropy parameter fint 
introduced by Singh and Huse. Various physical quantities including the ground-state energy, 
the anisotropy susceptibility, the sublattice magnetization. and their critical exponents associated 
with the magnetic order-disorder quantum phase transition. are calculated by the systematic 
inclusion of two-spin correlations. These results are then compared and contrasted with chose 
obtained from other methods Such as series expansions and variational calculations. The 
feasibility of carrying out quantum Monte Carlo simulations using the results presented here 
is also discussed by drawing parallels with the coupled-cluster calculations on the square-lattice 
antiferromagnes. 

1. Introduction 

The study of quantum antiferromagnets has undergone a huge resurgence of interest in 
recent years. Much of this revival has been sparked by the experimental discovery of high- 
temperature superconductivity in the ceramic cuprate materials [l], and by the theoretical 
conjecture of Haldane [2] concerning a previously unexpected qualitative difference between 
the ground-state ordering properties of antiferromagnetic Heisenberg chains with integral and 
half-odd-integral values of the spin quantum number. S. Nevertheless, despite intense study, 
many fundamental questions remain unanswered, even for such basic and archetypal systems 
as the nearest-neighbour Heisenberg model with antiferromagnetic exchange coupling. The 
only rigorous results [3-61 for the (zero-temperature) ground state of this model Hamiltonian 
are still all essentially based on the pioneering work of Dyson, Lieb and Simon [3], and 
from which we now know that N&el order is present to some nonzero degree when S > 1 
and when the lattice dimensionality d is such that d > 2. 

By contrast, the properties of the physically very interesting S = f case are still very 
much an open question, and thepresent paper is an attempt to address this problem by 
bringing to bear upon it a powerful technique from microscopic quantum many-body theory. 

Although we shall only be interested in the zero-temperature, T = 0. case, we recall 
that the Mermin-Wagner theorem [7] asserts that any NCel order present at T = 0 will 
be destroyed by thermal fluctuations for d < 2. The only exact results available for the 
S = 1 case show that the one-dimensional (1D) Heisenberg chain exhibits no Nee1 order, 
whereas the three-dimensional (3D) Heisenberg antiferromagnet on a cubic lattice exhibits 
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nonzero N6el order 161. To date, no rigorous results are known for the corresponding two- 
dimensional (2D) S = + Heisenberg antiferromagnets. All of the (approximate) results 
obtained so far indicate that the 2D case is subtle and intriguing. In particular, the lattice 
geometry seems to play a crucial role, and the presence or absence of frustration appears 
to be of special importance for determining the ordering present in the ground state. A 
comparison of the square and triangular lattices is therefore of particular interest in this 
context. 

The technically simpler case of the 2D S = i Heisenberg model on the square lattice 
has been the subject of considerable investigation in recent years [8-301. The consensus 
of current opinion from approaches based on spin-wave theory [S, 9, 121, series expansion 
techniques [lo, 16, 18,221, quantum Monte Carlo (QMC) calculations [ I l ,  13,14, 17,19-21, 
24, 25, 271, exact diagonalizations [IO, 15, 261. and the coupled-cluster method (CCM) 12.3, 
28-30] is that the S = Heisenberg model on a square lattice exhibits nonzero NCel order at 
T = 0. There is good igreement, for example, that the ground-state staggered (or sublattice) 
magnetization for the unfrustrated system has a value of about 6&70% of its classical NCel 
value. It is worth noting that the above consensus concerning the ordering properties of the 
S = i Heisenberg square lattice has depended strongly on the availability of large-scale 
numerical (QMC) calculations. These have provided very accurate calculations in their 
own right, and have also proved invaluable as benchmark results against which other ab 
initio microscopic techniques such as the CCM could be compared at various levels of 
implementation, so that the convergence properties of their approximation schemes could 
be investigated. for example. 

By contrast, the earlier generation of calculations relied heavily on variational 
approaches. While variational calculations are often an extremely valuable aid in the 
conceptualization of specific models, they can provide very deceptive results far properties 
such as order parameters or for correlation functions, even when the corresponding estimates 
for the energy are good. A typical fairly recent example is a calculation by Liang, Doucot 
and Anderson [9] far the S = $ Heisenberg square lattice based on a variational wave 
function including long-range resonating valence bonds. This trial wave function gives a 
ground-state energy per spin of -0.668810.0004 from a variational Monte Carlo simulation, 
which is very close to the currently best estimate of -0.66934 & 0.00004. Nevertheless, 
the trial wave function gives a vanishing staggered magnetization, compared to the currently. 
accepted best estimate of about 60-70% of the N6el value. Indeed, Liang et al originally 
argued that that the 2D S = + Heisenberg antiferromagnet on the square lattice was close 
to criticality on the basis that their energy estimate was so accurate. Clearly, such claims 
are difficult to sustain both in principle and in practice. 

By contrast with the case of the S = $ Heisenberg square-lattice antiferromagnet, 
the corresponding situation for the frustrated triangular lattice is far less clear. Whereas 
the square-lattice case has engendered considerable interest in the context of the 
undoped insulating precursors to the ceramic cuprate materials exhibiting high-temperature 
superconductivity, the corresponding frustrated triangular (and kagomi) lattices are of 
interest in the experimental study of such materials as VC12 and NaTiO2 [31], and in 
explaining various anomalous properties of 'He adsorbed on a graphite substrate [32]. 

The theoretical study of the triangular Heisenberg antiferromagnet was initiated by 
Anderson and Fazekas [33, 341. They suggested that this system might be a prime candidate 
for a spin liquid, namely a state in which the quantum fluctuations are strong enough 
to destroy totally the NCel-like order~of the classical ground state, which contains three 
sublattices with spins aligned at 120" to each other. In particular, their proposed resonating- 
valence-bond (RVB) type of variational wave function implies a disordered spin liquid state. 
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Other variational calculations have also been performed since then, some of which also 
exhibit a disordered ground state [35, 36, 371, while others [12, 381 lead to the opposite 
conclusion of a ground state exhibiting long-range order. For example, Hnse and Elser [I21 
found that their variational estimate for the energy with a wave function of correlated N&el 
type (i.e., with two- and three-spin correlations on top of a classical three-sublattice state 
with perfect alignment and relative orientations of 120') was lower than that with an RVB 
trial state. 

Nevertheless, as we have already discussed in the square-lattice case. conclusions based 
on variational calculations concerning the presence or absence of long-range order in the 
real ground state are unreliable, and it is necessary to look to other methods. For example, 
spin-wave analyses [39-43] lead to the conclusion that quantum fluctuations are insufficient 
to destabilize the N&l-like long-range order, but imply a sublattice magnetization reduced 
to about 50% of its classical value. On the other hand, Singh and Huse [441, using a 
series expansion method. found that the spin-wave results may underestimate the quantum 
fluctuations. They suggested that the triangular Heisenberg antiferromagnet may be at, or 
at least very close to, the critical point of k ing  magnetic order. Indeed, these authors 
were the first to introduce an anisotropy parameter into the Hamiltonian, and to calculate 
such ground-state properties as the energy and sublattice magnetization  as^ functions of this 
parameter. Their conclusion was that it was difficult to make any definitive statement on the 
nature of the ground state of the isotropic triangular antiferromagnet using their perturbalive 
approach. 

In view of the uncertain nature of the results obtained for the triangular Heisenberg 
antiferromagnet from the above analytic or semi-analytic approaches, one turns next to 
large-scale numerical approaches. For the corresponding square-lattice case the results for 
the largest systems to date. have been obtained by various QMC algorithms. These all 
rely ultimately on a positivity property for the configuration coefficients in the exact wave 
function. Whereas for the unfrustrated square lattice this condition is guaranteed by the 
Marshall sign-rule theorem [45], there is no such known result for the frustrated triangular 
lattice. Thus, the well-known 'sign problem' has so far prevented the application of QMC 
algorithms to the triangular lattice. Indeed, one of the objectives of the present work is to 
shed sufficient light on the approximate structure of the nodal surface for the ground-state 
wave function for QMC algorithms to be able to be applied. 

In the absence of any QMC results, essentially all other numerical results for the 
triangular lattice have come from the exact diagonalization of finite clusters [46-53], 
followed by an appropriate extrapolation to the thermodynamic limit of an 'infinite system. 
To date, clusters of up to 36 spins have been exactly diagonalized. Both the proper quantum- 
mechanical definition of an order parameter for a finite cluster and the subsequent consistent 
extrapolation of the finite-size data to the thermodynamic limit are subtle points,'as. has been 
stressed by Bernu et a1 [49, 50, 521. Both steps require a proper understanding of the nature 
of the symmetry breaking, both for its microscopic quantum features and for the large-scale 
(i.e.. long-wavelength) asymptotic behaviour. Bernu et al [52] have argued convincingly 
that analyses based on incorrect treatments of one or both of these points have led other 
authors [4648, 511 perfoiming exact diagonalizations to the incorrect conclusion .that 'the 
NCel-like magnetic long-range order does not exist in the Heisenberg antiferromagnet. 

Bernu et a1 [49] were the first to present numerical evidence of a large set of low-lying 
levels for the N-spin triangular Heisenberg antiferromagnet, which collapse to the ground 
state in the N + 00 thermodynamic limit. These sorcalled quasi-degenerate joint states 
are lower in energy than the softest magnons, with the former collapsing to the 'intensive 
ground-state energy per spin parameter as N - 2 .  whereas the former collapse as N-f .  It has 
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been shown [52, 541 that the spontaneous symmetry breaking in quantum antiferromagnets 
can be described by the collapse of such a set of low-lying quasi-degenerate joint states onto 
the ground state in the thermodynamic limit, and that they represent precisely the quantum 
analogue of the classical N6el ground state. 

The very recent work of Bemu er a1 [52] presents a careful review of the available 
exact diagonalization data for the triangular Heisenberg lattice. They argue that its proper 
interpretation in terms of a consistent~description of the symmetries and dynamics of the 
quasi-degenerate joint states indicates~ the presence of N6el-like long-range order. Their 
analysis shows that all of the available data for finite clusters, when properly analysed. are 
consistent with a value for the staggered magnetization of about 50% of the classical value. 
This value is essentially identical with the corresponding figure of 48% from lowest-order 
(i.e., O(I/S)) spin-wave theory. Corresponding close agreement between the results of 
first-order (O(l/S)) spin-wave theory 1431 and exact diagonalizations of finite lattices [53] 
has also been found for the spin stiffness, defined in terms of the energy required to impart 
a small twist to the spins. Since the spin stiffness of a spin liquid is zero and of an ordered 
antiferromagnet is nonzero, such calculations also provide independent evidence for the 
existence of N6el-like long-range order, to back that obtained from the presence of a tower 
of quasi-degenerate joint states in the low-energy spectra of the finite lattices. 

Nevertheless, as Bernu et a1 [52] themselves admit, the present state of the art on 
exact diagonalizations still does not exclude the possibility that for clusters of larger size 
(N > 36) than those studied to date, the quantum fluctuations could drive the system 
towards criticality, even though there is no evidence of such behaviour in the samples 
studied ( N  < 36). In view of the remaining uncertainty it is our intention in the present 
paper to apply to the triangular-laniceantiferromagnets the fully microscopic coupled-cluster 
method (CCM) [29, 55-68] which has already been very successfully applied to collinear 
magnets [23, 28-30], for which it has been shown to be particularly useful in studying the 
quantum phase transitions [30]. This latter point is particularly pertinent in view of the fact 
that in such non-collinear antiferromagnets as the triangular lattice the nature of the quantum 
disorder phase and universal transition are poorly established, despite some attempts in this 
direction [69]. 

The CCM has proved to be one of the most powerful and universal ab initio techniques 
in microscopic quantum many-body theory. Among its main advantages are its wide 
applicability and versatility, its automatic avoidance of unphysical divergences in the 
thermodynamic limit, and its ability to be implemented at arbitrary accuracy via the existence 
of systematic hierarchies of approximation schemes. The CCM can be used to calculate 
ground-state and excited-state energies, and also such other physical quantities as order 
parameters, correlation functions, and density matrices. It has been applied to a wide 
range of physical systems, including problems in nuclear physics, both for finite nuclei and 
infinite nuclear matter; atomic and molecular systems in quantum chemistry; and the electron 
liquids. More recently, it has also been successfully applied to the problems of quantum 
anharmonic oscillators treated as (0 ~+ I)-dimensional field theories: the @a relativistic 
quantum field theory; and a model of pions and nuclear interacting via a pseudoscalar 
coupling. The interested reader is referred to recent reviews [63. 671 for details of these 
and other calculations. 

Over the last few years the CCM has also successfully been applied to many lattice 
Hamiltonian systems, where it has again been seen to produce results among the best 
available. [68] and [70] give recent surveys of these results, which include: (i) spin- 
lattice systems such as the solid phases of 3He [71], and models of interest in magnetism, 
exemplified by the spin-; anisotropic Heisenberg (or X X Z )  model [23, 28-30, 71-73], the 
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spin-1 Heisenberg-biquadratic model [74], and the spin-; Majumdar-Ghosh (or Jl-Jz-)  

model with nearest- and next-nearest-neighbour interactions [75]; (ii) models of strongly 
interacting electrons on lattices, such as the Hubbard model [761; and (iii) lattice gauge field 
theories, such as the Abelian U(1) model [77. 781, and the non-Abelian SU(2) model [79]. 

The outline of the remainder of this paper is as foIlows. In section 2 we briefly 
review the fundamentals of the CCM, and then apply it to the anisotropic spin-i triangular- 
lattice antiferromagnets. The results obtained in the so-called full SUB2 approximation are 
presented in section 3. We calculate the ground-state energy and sublattice magnetization 
as functions of the anisotropy parameter, as well as their derivatives. The latter enable 
us to examine the critical anisotropy and the corresponding critical exponents. We also 
unearth an interesting oscillatory behaviour concerning the sign of the ket-state correlation 
coefficients. We conclude in section 4 with a critical discussion of our results. 

2. The Hamiltonian, the model state, and the CCM equations 

In this section we shall give a very brief review of the coupled-cluster method [S5-67] and 
then apply it to the spin-f triangular-lattice antiferromagnets. 

2.1. Overview of the coupled-cluster method 

The so-called single-reference version of the CCM requires a single model state IQ), in 
terms of which a quantitative and systematic description of the multi-spin correlations 
can be given. This model state IQ) must be a cyclic vector with respect to which one 
can define two Abelian subalgebras of multi-configurational creation operators (C;) and 
their Hermitian adjoint destruction operators (C;). The CCM parametrization of the exact 
ground-state ket wave function is now written as 

where the cluster correlation operator S is decomposed wholly in terms of mutually 
commuting creation operators [CT) for distinct' multi-spin excitations with respect to the 
model state IQ). Here (SI] denote the corresponding correlation coefficients which are to be 
determined. Such an exponential parametrization of the ground state ensures not only the 
proper counting of the independent multi-spin excitations but also the exact incorporation of 
the linked-cluster theorem, thereby guaranteeing the size extensivity of any physical quantity 
under consideration. By taking the inner product of the Schrodinger equation in the form of 
e-SHeSIQ) = E, IQ), with both the reference state itself and the set of multi-spin excitation 
states, [C;l @)I,  we obtain respectively the ground-state energy: 

E, = (Qle-SHeSI@) (2) 

o = (OIC;e-SHeSI@) (3) 

and the coupled set of nonlinear equations: 

from which the correlation coefficients [ S I ]  can be determined. It can be seen that this 
parametrization leads to a workable scheme since the similarity-transformed Hamiltonian, 
e-SHeS, which can be expressed as the nested commutation expansion H +. [H, SI + 
$[H. SI, SI + . . ., actually terminates at a finite order due to the fact that the correlation 
operator S contains mutually commuting multi-configurational creation operators only, and 
so long as H is a finite-order multinomial of  the elementary single-spin operators, as is the 
case for almost all models of interest. For example, the similarity-transformed Hamiltonian 



9026 Chen Zeng et a1 

will terminate at the fourth order in S if the Hamiltonian H contains products of at most 
two spin operators. 

In order to study arbitrary properties of the system under consideration, the bra state 
is also needed to calculate expectation values. The overall CCM has two distinct schemes 
which are known as the normal (NCCM) scheme and the extended (ECCM) scheme, to deal 
with this [60,62, 661. The crux of both schemes is that the corresponding bra and kct states 
are parametrized independently. and they are therefore no longer manifestly expressed as 
the Hermitian adjoints of each other. Indeed, this property can be violated when certain 
levels of approximation are implemented. - 

The bra ground-state wave function (*I corresponding to I*), where (QjH = (*lE, 
is the corresponding Schrodinger equation for the bra state, is parametrized in the NCCM 
as 

- ?.. 

(Cl = (QjSe-'. (4) 

Equations (1) and (4) together with the decomposition 

charac_terize the NCCM. The choice of unity for the constant term in equation ( 5 )  implies 
that (YIY) = (QIY) = (@I@) = 1 The ground-state version of the NCCM is now specified 
completely by the set of parameters Isl, T I ] .  The expectation value of an arbitrary physical 
quantity A may be written in the NCCM as 

A={C.JAIV) = ( Q ~ ~ e k - S A e S I r g ) = ~ [ ~ l r ~ l ] .  (6) 

2.2. The Hamiltonian and the model state 

Now that we have given a description of the method that we are using to tackle the problem, 
we next describe the physical model. The Hamiltonian under consideration describes the 
S = 1 triangular-lattice Heisenberg antiferromagnet: 

where [U:. u/,u:] are the S = f Pauli matrices at site i, and the notation (ij) means 
that the sum is to be over all nearest-neighbour pairs. The triangular-lattice sites are now 
divided up into three sublattices which we will call the A, B and C sublattices as shown in 
figure l(a); the division is done in such a way that no two sites on the same sublattice are 
nearest neighbours. The classical ground state (i.e., at S + 00). of the above Hamiltonian 
is the so-called J? x J? spin ordering configuration where the spins on the sublattice A 
point along tbe negative z-direction, and spins on the sublattices B and C are respectively 
rotated +120" and -120" away from the negative z-axis in the xz-plane as displayed in 
figure 1 (b). 

To facilitate both tho extension of  the above isotropic Heisenberg antiferromagnet to 
include an king-like anisotropy and the suitable choice of a model state in applying the 
CCM, we perform a spin-rotation transformation, following Singh and Huse [44], such that 
the above J? x f i  spin ordering becomes a fully aligned ferromagnetic spin ordering in 
the spin-rotated coordinates. Specifically, we now rotate about the y-axis the spins on the B 
and C sublattices by -120" and 120" respectively. Therefore, we can rewrite the previous 
Pauli matrices [U;,  U:, 0;'). defined with respect to a global quantization axis, in terms of 
a new set of Pauli matrices {Z:, Z?, F f )  which are now defined with respect to the local 
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C 

Figure 1. The three-sublattice division of the model state used is indicated by (a). The 
corresponding spin directions on different sublatices are.shown in (b). Some of the vecto~s 
introduced in the text are also displayed in (c). 

quantization axis at site i due to the spin rotation. For those spins belonging to the B 
sublattice. for example. we have: 

(8) 
w6 ~ 1,. 

ZU“ 
u z  = -p - - - L p  - .-U a-, u ? ~ =  ZJ 

2 2 2 
u -  

with similar expressions for the spin operators on the C sublattice sites. 
Armed with expressions like those given in equation (8). we rewrite the Hamiltonian 

i n  terms of spin operators in the spin-rotated coordinates; we also introduce an anisotropy 
parameter, A, as below: 

so that the Heisenberg Hamiltonian is regained when h = 1. The summation is over all 
nearest neighbours but now with directionality indicated by (i - + j )  which goes from A to 
B, B to C. and C to A. To case the notational burden, we.henceforth drop the tilde symbol 
on the spin operators. This should cause no confusion since we will henceforth restrict 
ourselves entirely to the spin-rotated coordinates. The Hamiltonian can then be rewritten in 
terms of the corresponding creation and destruction operators, U’ = U‘ & iuy, as 

Compared with the often-studied XXZ-model for extending the isotropic Heisenberg 
antiferromagnet given in equation (7) to an anisotropic antiferromagnet where the two- 
spin interaction term u,%f is multiplied by the anisotropy parameter, the present extension 
represented by (9) or (IO) appears somewhat contrived. It facilitates. however, not only 
the nondegenerate k ing  expansion as performed by Singh and Huse [44], but also the 
implementation of the single-reference version of the CCM outlined above. Unlike the 
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XXZ-model, whose ground-state manifold has an extensive degeneracy, i.e., a finite entropy 
per spin, in the limit of vanishing anisotropy, the present anisotropic Hamiltonian given in 
(9) or (IO) at A = 0 clearly has as its unique ground state the fully aligned ferromagnetic 
configuration in the local spin coordinates, whereas the case h = 1 recovers the conventional 
Heisenberg antiferromagnet. We choose this ferromagnetic configuration as our uncorrelated 
model state in anticipation of a three-sublattice ordering for a wide range of anisotropy 
starting from h = 0. We will denote the model state by IO): 

N 
10) = @ I .l); in the local quantization axis (1 1) 

;=I  

where N is the number of lattice sites. 

2.3. The CCM correlation operator and the CCM equations 

To implement the CCM in practice, the correlation operator S has to be truncated. Here 
we employ the so-called full SUB2 approximation scheme where we retain up to two-spin 
correlations while higher-order correlations involving more than two spins are set to zero. 
This truncated S-operator therefore has the following form: 

where the site indices are allowed to run over all lattice sites. In order to deriv5the coupled- 
cluster equations, we must calculate the similarity-transformed Hamiltonian, H = e-SHeS, 
which can be  readily computed by replacing all the single-spin operators in H with 
the corresponding similarity-transformed operators, since for any two operators U and U ,  
ii3 = Z. For the SUB2 form of S given in equation (12), we obtain the similarity- 
transformed single-spin operators as follows: 
%+ = U ;  + 

7 = U: + [U:, S] = U: + 2A;G: + 4 B;~CT;G; 
I 

I A- ui = CT; + [.;, s] + - [ [U; ,  s], s] 
2 

=U; - 4A;u: - 8 B;;u,+u: - 
1 

Here the site indices 1 and m are allowed to run over all lattice sites. Note that the 
correlation coefficient B,, is only superficially present in the above formulas because of an 
exact cancellation whenever Bi, occurs. The origin of this comes from the basic operator 
identity ( u : ) ~  = 0 which automatically excludes the unphysical B;; from the comelation 
operator S. We nonetheless explicitly keep this fictitious term to facilitate the Fourier 
transform as discussed in appendix A. 

To simplify the problem further, we now consider the lattice translational symmetries, 
in terms of which the set of correlation coefficients {A;) can take one of only three 
independent values depending on to which sublattice the site index i belongs. For the 
two-body coefficients, the translational invariance implies that B;, depends only on the 
difference of its indices, i.e., B;j = B;- j .  Here i - j is understood as a lattice vector 
connecting sites i and j .  which can be further classified as connecting sites from the A 
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sublattice to the B sublattice, B to C, C to A, and also A to A, B to B, and C to C. With 
the prescriptions given by equations (2) and (3). it is a straightforward yet tedious exercise 
to obtain the ground-state energy expression in terms of thcse correlation coefficients, and a 
coupled set of nonlinear equations from which the correlation coefficients can themselves be 
determined. After deriving these equations by utilizing the translational symmetries only, 
we also observe that the equations respect an additional symmetry of the cyclic permutation 
of the three sublattices. The solution to the CCM equations with both the lattice translational 
and cyclic permutation symmetries being imposed will henceforth be called the symmetric 
CCM solution. Although the full SUB2 equations may permit other solutions, we restrict 
ourselves henceforth to the symmetric solution in which the three independent variables from 
the set ( A i ]  of the single-spin operator SI are reduced to just a single variable, denoted by 
x ,  and which is now independent of the site index. Similarly, the two-spin correlation 
coefficients B;,, for a given separation, i - j ,  depend only on whether the spins are on the 
same or different sublattices regardless of the specification of A, B or C. We thus introduce 
a;-, = Bij for the former case. and = Bjj  for the latter. 

From equation (2). we can easily compute the ground-state energy as 

E8/N = -1.5 - l8hxZ - 36h@o (14) 
where @o denotes the correlation coefficient of a pair of nearest-neighbour spins. Note that 
we have further introduced pi-, with pl being the nearest-neighbour vector as 
detailed in appendix A. 

Similarly we obtain the CCM equation for the single-spin correlation coefficient x as 

0 = 8x + 4hx + 48hx' + l92hx@o - 96hx c(a. + F 7 )  (15) 
T 

where T runs over all lattice vectors of the A sublattice (see appendix A for details). Clearly, 
a simple inspection of equation (15) shows that x = 0 is a solution, the physical origin of 
which can be traced back to the coplanarity of the spin ordering as discussed in section 3.4 
below. We henceforth further restrict ourselves to the coplanar solutions (x  = 0) of the 
CCM symmetric equations, although equation (15) may, i n  principle, also have solutions 
with x # 0. 

After considerable algebra, we obtain the CCM equations for the two-spin correlation 
coefficients ai-j and q;-, by using equation (3), details of which are explicitly given i n  
appendix A. This coupled set of nonlinear equations can be decoupled by performing a 
Fourier transform (also see appendix A for details). We obtain respectively the equations 
for the correlation coefficients aq and Cq in the momentum space as follows (in the case 
x = 0): 
o = 24(i + 24h@o)aq + 2h(gqrq + @;r; - 640) 

-48h(Gqrq + @Gr;)aq + 96Aso - 24h(@iA, + @:'A:) + 481170 (16) 
and 

o = (-4& - 4Sh@i - 2h)r; + (24 + 576h@& + 2h(aqr; +@;A;)  

--24h(a;r; + @;rq + z@q@;r; + 2 a q @ ; ~ ; )  (17) 

O=Caq (18) 

which ensures that the fictitious variable a0 (= B,;) is zero. Here @O (= ( 3 / N )  E, fq) 
denotes the correlation coefficient of a pair of nearest-neighbour spins just as in equation 

together with a supplementary constraint 

9 
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(14). We have also used the shorthand notations ro = ( 3 / N )  E, olq@qrq and qo = 
(3/N) xq +:A4. rq and Aq are defined as rq = 1 +e-’qu +e-’*’ and A 4 -  - e-i9(u+v)r* 4 

where U and w are the primitive lattice vectors of a sublattice as shown in figure I(c). Note 
that in the thermodynamic limit ( N  + 00). the vector in the momentum space, q, runs over 
the first magnetic Brillouin zone. or the first Brillouin zone for one sublattice. We take N 
to denote the number of spins. 

The occurrence of @o, ro and r& in the above equations imposes a quantitative self- 
consistent condition on the solution, which is in contrast to the conventional spin-wave 
theory or the l a r g e 3  expansion where the consistency of the assumption of an ordered 
phase can only be ascertained qualitatively. In order to obtain accurate numerical results 
for various physical quantities, we discretize the magnetic Brillouin zone and use a large 
number NK of points in solving the above CCM equations self-consistently. 

Similar procedures have “so been carried out for the corresponding CCM bra-state 
equations where the operator S within the full SUB2 approximation retains the following 
terms: 

The detailed derivation of the CCM bra-state equations and their Fourier transform a x  
performed in appendix B. 

3. Results 

In this section, we describe the numerical results for various physical quantities computed 
within the full SUB2 approximation. 

3. I .  The ground-state energy 

From our calculations we find that the ground-state energy per spin. E R I N ,  converges rapidly 
ior increasing NL.. In figure 2 we show E R I N  as a function of the anisotropy parameter 
A, where the results obtained by Singh and Huse [44] from a series expansion study are 
also displayed for comparison. Clearly, the SUB2 results reproduce the corresponding 
perturbation results very accurately for A < 0.5. At the isotropic Heisenberg point, we 
obtain E,/N = -2.015, which should be compared with the classical energy of -1.5 and 
with the value -2.21 f 0.01 extrapolated from~ the series expansion [44]. The [act that 
the SUB2 ground-state energy captures only about 70% of the quantum corrections to the 
classical energy essentially reflects the significance of three-spin correlations, particularly 
among three nearest-neighbour spins on an elementary triangle, which are not retained in 
the SUB2 approximation. To see this more clearly, we tabulate in table 1 the ground-state 
energy per spin for the isotropic Heisenberg model obtained by other methods. In particular, 
we note that the variational wave function calculation by Huse and Elser [I21 with the 
inclusion of the nearest-neighbour three-spin correlations yields -2.1 12 for the ground- 
state energy per spin, which represents a significant improvement upon the corresponding 
value of -2.028 obtained by Miyashita. with only nearest-neighbour two-spin correlations 
being considered [38]. Work on the systematic inclusion of higher-order correlations in the 
CCM on this system is currently in progress. 
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Figure 2. Ground-state energy per spin, E , / N ,  8s a Function of the anisbtropy A. The results 
from the Full SUB2 approximation are obtained with Nk = 600'. where the terminating point is 
indicated by ., whereas the perturbation results are obtained by Sin& and Huae in [MI. 

Table 1. Comparison of ground-state energies per spin at the Heisenbe= point obtained from 
various methods. 

Reference Method &IN 

[381 Variational' -2.028 
1481 Exam diagonalization -2.196 
1171 Variationalh -2.112 
[I21 Variational' -2,1468 
[331 Resonating valence bond -1.88 
1441 king expansion (second order) -2.174 
[441 ~ king expansion (extrapolated) -2.21 
Present work CCM(SUB2) -2.01s 

Only nearest-neighbour two-spin correlations are retained. 
Nearest-neighbour two- and three-spin correlations BE taken into account. 

r Two-spin correlaions of arbitrary range a d  the nearest-neighbour three-spin correlations are 
incorporated. 

3.2. The critical anisotropy and the critical exponents 

As already hinted in figure 2, the SUB2 ground-state energy curve terminates at an anisotropy 
A, beyond which no physical solution of the CCM equations exists. Although the CCM 
based on the Ntel model state given in equation ( I  I) is bound to break down in the region 
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of the anisotropy parameter space where the true ground-state wave function possesses a 
different symmetry from that of the Nee1 ordering, it is clearly demonstrated in [23] for 
the square-lattice antiferromagnets that the terminating point corresponds to the critical 
point of a phase transition. We thus refer to the observed terminating point here for the 
triangular-lattice anisotropic antiferromagnets as the critical point. 

Our method of numerically solving the SUB2 equations is as follows. Since the physical 
solution to the CCM equations at h = 0 requires all the correlation coefficients to be zero, 
we use this known solution as an initial input in solving the nonlinear CCM equations to 
obtain the solution for a slightly increased nonzero anisotropy, which, in turn, is used as 
an initial input for the next incremental anisotropy. We find that A, = 1.33525 =k0.00001. 
The uncertainty reflects a finite incremented value taken for A at each step of the iterations. 

1000, I I I I 

I I I I , , , .  , n ni , ,  ....,., 
"."> 

1.331 1.332 1.333 1.334 1.335 1.335 

x 
Figure 3. The second derivative of the ground-state energy a a function of the anisotropy. The 
critical anisotropy as a function of Nx is shown in the inset. 

In order to shed further light on the nature of the magnetic order-disorder quantum phase 
transition in this system by investigating the singular behaviour of the CCM correlation 
coefficients at the critical point A = A,, we calculate the derivatives of these coefficients 
with respect to the anisotropy parameter. Since the CCM equations are explicitly given 
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in equations (15)<18)- we can straightforwardly take the derivatives analytically on both 
sides of the equations and similarly solve the equations so obtained. By virtue of this, 
we avoid having to use the numerical diffcrcnce method for evaluating derivatives and its 
large associated errors. Recalling that the ground-state energy E, is related to the nearest- 
neighbour correlation coefficient (oa, the above calculation readily yields the derivatives of 
E ,  and reveals the nature of its singularity at A,. Specifically, we calculate the anisotropy 
susceptibility defined as 

The numerical values for xa as a function of the an'isotropy A are shown in figure 3 for 
various numbers of integration points NK used. Clearly, xu diverges at the corresponding 
critical anisotropy AC(Nd which is found to converge quickly with increasing Nk to the 
value A, = 1.335 25 quoted above, as can very clearly be seen from the inset in figure 3. In 
figure 4, we display the log-log plot of the anisotropy susceptibility x. versus the deviation 
of the anisotropy away from the critical value, A, - A. Clearly, in the region where both 
the deviation is sufficiently small and the convergence has been achieved by increasing Nk, 
the straight line shows that x. has a power-law singularity of the form xu - (A, - AY' 
as A -+ A;. The slope readily yields the critical exponent f i  = -f. Equivalently, the 
ground-state energy has a power-law singularity at A,, or the following expansion near 
the critical anisotropy: 

where fo, fi  and f2 are constants. 

3.3. The sign oscillation of the kef-state correlation coefficients 

We now turn our discussion to the structure of the ground-state wave function in connection 
with the possibility of performing quantum Monte Carlo simulations. 

In solving the CCM equations, we have used the fact that all the correlation coefficients 
are real, and we have correspondingly set @-* = in equations (16) and (17). This is 
justified by noting that the Hamiltonian matrix in a complete basis, for instance, the king 
basis, is real and symmetric. Thus, if a wave function @ is a ground-state wave function, 
then @* is also a ground-state wave function; this means that @ + @* =~ 2 Re[@} is also 
a ground-state wave function. From this we deduce that at least one ground-state wave 
function is real. 

Unlike the variational approaches [12, 381, where a certain form such as a power-law 
decaying behaviour as a function of the separation has to be assumed for the spin-spin 
correlations to reduce the dimensionality of the parameter space to facilitate the search for 
the optimal parameters by Monte Carlo simulations, the present SUB2 approximation does 
not make any a priori assumption of this kind. This is important because we can then probe 
the ground-state structure in an unbiased manner. 

For the nonfrustrated antiferromagnets, the essential ingredient is provided by the 
Marshall-Peierls sign theorem which concerns the phase relations of the projection 
coefficients of the ground-state wave function  onto a complete set of spin configurations 
1451. This theorem, when applied to the square Heisenberg antiferromagnet in particular, 
states that all of the coefficients, when expressed in the spin-rotated coordinates, are positive. 
Equivalently, the ground-state wave function has only one nodal region, a connected region 
via the Hamiltonian in the spin configuration space where the wave function has the same 
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Figure 4. The log-log plot of the misotropy susceptibility versus the deviation of the anisotropy 
away from its critical point. for various Nk. 

sign. This feature is at the heart of straightforward applications of quantum Monte Carlo 
simulations [20, U].  

By expanding the exponential operator in  the CCM parametrization of the ground 
ket state, we can easily show that each spin-spin correlation coefficient is .a projection 
coefficient of the ground-state wave function onto the corresponding elementary excitation 
configuration which flips a pair of spins with respect to the NLel state. Although it is not 
known a priori that the CCM in the SUB2 approximation will satisfy the Marshall sign 
theorem for the square lattice, the numerical values of these coefficients at the isotropic 
Heisenberg point plotted in figure 5(a) clearly show that this is the case. By contrast, the 
corresponding coefficients for the frustrated triangular Heisenberg antiferromagnet are found 
to have an oscillatory behaviour in their signs, as is also shown in figures S(a), 5(b) and 
5(c). There has been some recent work 1801 in which it is argued that the Marshall sign 
theorem may survive weak frustrations in certain models. However, our present finding 
is in favour of the breakdown of the Marshall sign theorem for the triangular Heisenberg 
antiferromagnet. Moreover, more and more correlation coefficients are found to become 
positive near the terminating point by comparing figure S(c) with 5(b). This leads US 
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to speculate that the effect due to frustration is considerably suppressed near the critical 
anisotropy. More interestingly, perhaps, we note that the fixed-node Monte Carlo method 
[81] and its extension 1821 for attacking both continuum and lattice fermion problems 
require a reliable trial wave function in terms of which the true wave function can be well 
approximated, especially in terms of its nodal structure. The oscillatory behaviour observed 
here in the full SUB2 approximation for the frustrated triangular Heisenberg antiferromagnet 
may represent a reasonable description of the nodal structure of the exact wave function, 
since we expect corrections from higher-order spin correlations to be small. 

3.4. The sublattice magnetization and its critical exponent 

We now proceed to use the bra-state correlation coefficients, that are obtained from the 
corresponding bra-state CCM equations, which are given explicitly in appendix B, to 
compute the sublattice magnetization as a function of the anisotropy parameter A. The 
sublattice magnetization M' is defined to be 

3 ML = -- C(U,') 
 EA 

so we may wTite directly that 

Furthermore, we can also compute the out-of-plane component of the sublattice 
magnetization, My = - (3 /N)xceA(u2) ,  in terms of which the physical meaning of the 
single-spin correlation operators SI and SI can be made transparent. To this end, we compute 
(U!) as 

Clearly {U!) has to be zero; otherwise it gives an unphysical value because of the imaginary 
factor i. AlthoughJhe NCCM parametrization, in which the ground ket state I*) and the 
ground bra state (*I are no longer Hermitian conjugates of each other, gives no rigorous 
guarantee on the reality of any physical quantity calculated within the NCCM scheme, it is 
shown nonetheless in various contexts that the NCCM does indeed usually give a physical 
description. Within the well-defined full SUB2 approximation adopted in this paper, we 
have little choice but to argue for the coplanarity of the spin ordering2dicated by {U:) = 0, 
which implies that A, = c, = 0 for arbitrary n. Equivalently, SI = SI = 0. 

In figure 6 we show our numerical results for the sublattice magnetization M L  as a 
function of the anisotropy parameter A. We find that at the isotropic Heisenberg point 
(A = I), Mi is about 0.85, or 85% of its classical value. Near the critical point, we 
show in the inset of figure 6 that the sublattice magnetization at A = 1.33524 converges 
rapidly as a function of Nk to about 0.75. To study the singular~behaviour of the sublattice 
magnetization at the critical anisotropy A,, we also display in figure 7 the log-log plot of 
the first derivative of the sublattice magnetization with respect to the anisotropy parameter 
versus the deviation of the anisotropy away from the critical value, A< -A .  In the region 
where both the deviation is sufficiently small and the convergence has been achieved by 
increasing N k ,  these results reveal a 4 power-law singularity for the sublattice magnetization 
at 1,: 

ML + M: + k(A, - + . . . A + A; M) 
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Figure 6. The sublorrice magnetization M' obtained with Nt = 6002 is shown os a function of 
anisotropy A. The convergence of M' agoinst Nx for I = 1.335 24 is displayed as an inset. 

where M,' and k are constants. Clearly. at the level of the full SUB2 approximation, 
the ground-state energy and sublattice magnetization have respectively 4 and power- 
law singularities. which are identical to those for the square-lattice case [30, 831. This 
strongly indicates that both phase transitions belong to the same universality class, and 
further supports the existence of three-sublattice ordering in the frustrated triangular 
antiferromagnet. 

4. Conclusion 

In this work, we have extended the domain of application of the CCM to include frustrated 
antiferromagnets. Arbitrarily long-ranged two-spin correlations are studied and results 
are derived for the ground-state energy, the anisotropy susceptibility and the sublattice 
magnetization. This SUB2 calculation is a mean-field lype or calculation and has a much 
wider area of application than merely spin systems. Hence, we recommend its use in the 
initial study of any system that lends itself to such a method of attack: much in the same 
way that spin-wave theory is considered now. 

The SUB2 calculation presented here has many points of interest i n  common with 
spin-wave theory. Both methods use a Gaussian parametrization of the ground-state wave 
function with an infinite number of parameters. A non-Gaussian parametrization in the 
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Figure 7. The log-log plot of the first derivative of the sublattice magnetizarion with respect 
to the anisotropy versus the deviation of the nnisolropy away from its critical point. for various 
Nk . 

CCM with the inclusion of a three-body term on an elementary triangular plaquette is one 
direction that current work is taking. In contrast to spin-wave theory however, the CCM 
provides an unbiased estimate of the location of the critical point whereas in spin-wave 
theory, its existence can be ascertained qualitatively oqly. To the best of our knowledge, 
no spin-wave theory analysis has been carried out on this model for a general anisotropy; 
the only results available being those at h = 1 [40]. 

Much can be gained by comparing the triangular-lattice system under consideration here 
with the CCM analysis on the square lattice. As has been discussed here and in detail in 
[84], the triangular lattice and the square lattice are in the same universality class at this level 
of approximation. In Singh and Huse’s paper [44], three scenarios are suggested for the 
nature of the ground state at the Heisenberg point. The first one is that the ground state has 
long-range order at A = 1; with this assumption the value of the sublattice magnetization is 
extrapolated to about 20% of its classical value. This value is much smaller than that of the 
spin-wave calculation, which is about 46% of its classical value [40]. Therefore, they also 
consider two other possible options: (i) the system disorders at 1 = 1 and (ii) the system 
disorders at a value h, c 1. For case (i), the system would belong to the universality class 
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of the classical Heisenberg antiferromagnet on the stacked triangular lattice, whereas for 
case (ii) it belongs to the universality class of the 3D classical king magnet. Both (i) and 
(ii) will result in a smaller value of the critical exponents for the sublattice magnetization 
than the value of 1/2 found in the CCM full SUB2 calculations in this paper. Typical values 
would be around 1/3. Although our mean-field results on the critical exponents support 
the scenario &at the isotropic Heisenberg antiferromagnet possesses a long-ranged three 
sublattice ordering, higher-order calculations are. needed to carefully identify the universality 
class of this quantum phase transition. 

This also helps to explain why we consider the value of 85% presented here for the 
sublattice magnetization in this work to be one that can be substantially improved upon by 
the systematic inclusion of higher-order terms; in this respect. more work needs to be done. 

We now turn to the oscillatory nature of the ket-state coefficients, paying particular 
regard to the implications this could have for the quantum Monte Carlo simulations of 
such systems at zero temperature. The rule that governs our observed oscillation is not 
known, although it  has been noted that, for increasing values of A, a greater proportion of 
coefficients become positive, although no systematic procedure has yet been developed to 
describe this. Here, the triangular-system ket-state coefficients show a marked difference 
in behaviour in comparison with the equivalent two-body coefficients for the square lattice. 
There, the coefficients are all positive in accordance with the Marshall sign rule. This 
positive semi-definiteness property is what allows quantum Monte Carlo simulations to be 
carried out on such a system. 

In conclusion. the CCM is a fully microscopic method which allows the unbiased and 
systematic study of quantum phase transitions. On the triangular lattice, higher-order work 
is required, and it is our hope that the techniques developed in [30] can be adapted to the 
problem under consideration here and, ultimately, also extended to multi-spin Hamiltonians. 
This would provide a link with experiment and would present a stern test for the CCM. 
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Appendi A. The explicit form of the ket-state equations 

As indicated in section 2.3, we employ the so-called SUB2 approximation in which all the 
one- and two-spin codelations are retained while higher-order correlations are set to zero. 
Thus, 

Here, the indices i and j are allowed to run over all lattice sites. In order to derive the 
coupled-cluster equations, we must now calculate the similarity-transformed Hamiltonian 
e-SHeS. As explained in section 2.3, this is done by replacing the single-particle spin 
operators in the Hamiltonian with their similarity-transformed counterparts. 

over nearest neighbours i, j with 
a double sum Ci E,,. Here the index i sums over all sites on the lattice, whilst the sum 
over p denotes a Sum over three vectors p , ,  p z ,  p3> as shown in figure I(c), such that if i 
is on an A sublattice site then i f p , ,  I = 1, 2,3,  i s  on a B site. Thus we are replacing j by 

Now we replace the sum in the Hamiltonian 
~ ~ 
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i +pi .  By this convention, we preserve the condition that i + j should always be in the 
order A-B, B+C and C-A. This condition is due to the directionality of the interaction 
terms in the Hamiltonian given in equation (10). 

In order to derive an equation for the ket-state coefficients Ai and Bi,, we apply equation 
(3). Since we are working in the SUB2 approximation, we have two equations to derive 
and then solve. The equation for the coefficients A,, is given by 

o =  (OlCqGl@) (A21 

0 = (@Iu;c;ZlO). (A3) 

and the equation for the coefficients B i  is given by: 

The equation for the A, is explicitly obtained as 

0 = 4A, + l 2 A t  [An-/, + An+/,] + 2 [Bn.n+p - Bw-p] 

+A [A.+, + An-p] + 4fiAA. [A,+, - An-p] 
P I '  

+48& [ B n , n + p  + Bm-p] - 2 4 A C A i  [Bi+p.n + Bi-p,.]) (A4) 
i 

whilst the equation for the Bnn is 

0 = 3 A  
(8Bnk (1 - SnkI - [2AnAk + 4&1 {&+,,.k + &++p])  - 7 

P P 
(&+p.x + Sn.t+p]  

4% 
i-2 - Arl {&+p.k - & . K + P ]  

+2hE [A. - A h  [An& +4Bnkl ( & + p , k  - &.i i+p)  

+445c [ A A ,  - A&nl (&+,.x - &.k+p] 

+ 4 & A x B n k  [A,+, + A t + ,  - A,,-? - A K - ~ ]  (1  - &rJ 

+ 4 4 5 A z A n  [ B n + p . k  - Bn-p.n] 11 - & x )  

+4&A At [Bt+p..  - Bk-p.,] {I - 8nkJ 

-(A/2) [A: + A: + 2Bnn + 2Bxx] ( 8 n i p . n  + &.K+p} 
+A [Bn+p.k + Bk+p..] 11 - 6,~) + A 

- 4 8 A x  [ A A k h  + B:k] { 6 ~ + ~ . k  + L.~+P} 

-6A 

+24A 

I' 

P 

P 

I' 

P 

I' 

I' 

[Bn-p.r + B~-p.n]  I I - 8 n r 1  
I, I' 

P 

[A: + 2Bm] [A: + ~ B M ]  (Sn+I,.l; + b . a + p }  
P 

Bnk [A,A,+p + AxAk+,] (1 - 8.r) 
P 
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P i  

+48A B n k  [%-p.n f i k - p . k ]  11 - &k1. (A5) 
P 

In equation (M) above, the term B k k  is fictitious and is introduced so that a consistent 
Fourier transform can be defined. The factor ( 1  - 8 ,~ )  which appears repeatedly arises so 
that the the right-hand side of equation (A5) is identically zero when n = k as implied by 
equation (A3). since (0;)' = 0. 

We now set about solving these two complicated sets of equations. From the lattice 
translational symmetry, we assert that {An) may depend only on what kind of lattice site n 
lies on; that is, for the (A,] we write 

n E A sublattice 
n E B sublattice 
n E C sublattice. 

For the {Bn~] ,  since these correlation coefficients depend only on the difference of their 
indices, i.e., Brix = B , - k ,  we may write in the case where both indices n and k lie on the 
same sublattice, 

CL? n.  k E A sublanice 1 y7 n, k E C sublattice 
B,a = pT n ,  k E B sublattice (A7) 

where in all cases in equation (A7) we have k = n+r. Here the bold-type k and n denote 
the position vectors of the lattice sites k and n respectively. Elements r of set T defined 
below form a periodic lattice spanned by the sublattice basis ZL and 2) as shown in figure 
I(c), 

r E T  = {w: w = p u f q u ;  p , q  E Z} (-48) 
where Z denotes the set of integers. Thus the lattice is invariant under translation by a 
vector r when r is a member of the set T defined above. Hence 

CLr = p7 = p L  Yr = Y-r. (A9) 

~ ~ 

For the case when n and k are on dissimilar lattice sites we have 
qr 

x7 
n E A, k E B, k = n + r  + p ,  
n E B, k E C, k = n+ r'+p, 
n E A, k E C, k = n - r  - p t .  

(A101 
@? 

The CCM equations are then rewritten in their entirety using the variables defined above 
without using any other symmetries other than equation (A9). As the reader will appreciate 
these equations are very long. However, we find that these equations also respect the 
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symmetry of cyclic permutation of sublattice A, B, and C. This comes as no surprise since 
each sublattice is labelled arbitmily. We therefore restrict ourselves to the SUBZ-symmetric 
solution where 

With this simplification. equation (A4) for the A,  gives rise to equation (15) used in section 
2.3. As discussed there and also in seqion 3.4,, we find that x = y = z = 0 is the physical 
solution, which we call the coplanar solution. With this further restriction (x = 0), equation 
(A5) simplifies considerably, as considered explicitly below. 

Thus for the [ B o k ]  we have two different cases. Firstly, when n and k are on the same 
sublattice, we have 

Al.  Fourier transformation of the CCM ket-state equations 

The further handling of the CCM equations is considerably eased by Fourier transformation. 
We note that some care must be exercised in performing the Fourier transform, since we 
require that arguments in the functions describing the spin correlations to be on the same 
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sublattice as that dummy variable with respect to which the Fourier transformation is made. 
To remedy this we make use of the following vector relations: 

3pl = u + v  p z = - u + p ,  p , = - v + p 1 .  (A141 

We now introduce 6 so that & E v?+~ , .  This means that p'r+p, and pT+p, are rewritten 
as G7-,, and @v-v respectively. With these changes made, we thus now define the Fourier 
transform @k of @, to be 

with the corresponding inverse being given by 

where Ic runs over the first Brillouin zone of the A sublattice. An equivalent Fourier 
transform 

Before we proceed to Fourier transform the CCM equations for the {Bnk},  and give their 
solution explicitly, we first note some important points, however. Suppose that there are 
Nk points in the first Brillouin zone as we discretize it. It can be seen that the number of 
variables for which we must solve is 3Nx + 1 (namely Nk variables for each ak, &, ana @:, 
together with a,,~), whilst the number of CCM equations we have is 3Nk. This is because 
a,,o is a fictitious quantity introduced so that the CCM equations could be self-consistently 
Fourier transformed. To circumvent this problem, we set av=o = 0 which implies 

of ay is also defined. 

(-417) 

where the sum over q is over all sites of the first Brillouin zone of the A sublattice. Thus we 
now have an additional equation, making 3Nk + 1 equations in all. However, the equations 
for the a, are linearly dependent as we shall now show. With the condition aT=o = 0 and 
that of equation (All) ,  the Fourier-transformed CCM equation for when n and k are on the 
same sublattice becomes 

0 = 24 [I + 24h@o] a, + 2h [@,r, + @p*rS] - 12h& 

-24h [$A, + @:'A:] + 48h(3/N) $Ak (AIS) 

where we have defined r, = 1 +e-'*"+e-'*' and A, = e-i*(u*)r;; 60 E fpP, denotes the 
nearest-neighbour spin-spin correlation coefficient. Also z* denotes the complex conjugate 
of z. This is exactly equation (16) used in section 2.3. 

If we now sum equation (AH) over all q then it can be seen that the right-hand side 
sums identically to zero. Thus our assertion is proved. Therefore, we have only 3Nk linearly 
independent equations. Also note that from equation (A17), the cyq are linearly dependent; 
that means we only have. 3Nk linearly independent variables. This discussion arises as we 
had'to introduce the fictitious variable a,,~ so that the function a? is well-defined on an 
entire sublattice, or the set T in equation (AS), in terms of which a consistent Fourier 
transform can be defined. 

k 
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The Fourier transform of equation (A13), when n E A sublattice and k E B sublattice, 
1s 

0 = [24 + 576@0] @,, f 2h [uqr; + @;A:] + -4@0 - 48.X@: - -A r: 
8 

( A 1 9  
This is of course exactly equation (17) quoted in section 2.3. 

Throughout the derivation of these Fourier-transformed equations, we have assumed 
that the ground-state wave function is-real. This means that we can write @-,, = 6:. The 
reality of the ground-state wave function is discussed in section 3.3. 

We now bring the reader’s attention to an interesting point. We assume that the CCM 
coefficients in real space are invariant under 120‘ rotations about the y-axis., Suppose that 
the rotation of 120” about the y-axis in the positive direction is denoted R+. Then, the 
Fourier-transformed quantities we are concerned with in this problem transform as follows: 

ail* = % 6j9+ = eiqv@9 rq+ e-’qU ’ r,, A ~ +  =e-2iqu A, (AZO) 
where q+ = R+q.  We now consider the CCM equations for the vector q+ and then make 
use of the given transformation rules to see if the equations still hold. This was done and 
no inconsistencies were found. Thus the equation also preserves rotational symmetry. 

Although the equations are nonlinear, we now have the same number of variables as 
equations and so we can try to find a numerical solution of these equations by employing an 
iterative procedure. This means that great care must be taken in ensuring that the procedure 
used does not diverge away rapidly when it is in fact close to the correct solution; also, 
much effort must be devoted to making certain that the iteration map does not enter a 
domain where there is no solution. thereby halting the algorithm, when in fact if it had 
chosen a different domain, it would converge to the solution. These points are particularly 
pertinent when the critical exponents are being calculated when an accuracy to at least five 
decimal places is required for the value o l  the critical point and in the ket- and bra-state 
coefficients. Another point is that, to ensure good accuracy, the largest value of Nk used 
was Nk = 600:. To decrease the time taken in Carrying out the calculation for this value 
of N k ,  data from the iterations involved for N k  = 5002, 4002 and so on were used in a 
‘leapfrog’ fashion. This reduced the CPU time required dramatically. 

Appendix E. The bra-state equations 

The ground bra state (51 is parametrized as 

[ 3 1  
-24h + @;rJ - 48h [@,,@;r; +o(&A;]. 

($1 = (@pi Fe-’ (B1) 

s”+?i+?z= l + ~ c i u ; + ~ d i , j u ~ u ~ .  (B2) 

where S is given in equation (12)  and^ s” is given by, in the SUB2 approximation, 

i i j  

The coefficients c,, and d,,k are determined from the equations 

(01 [H, U:] es Iaj = o 
and 

(01 Fe-’ [H. u:u:] es IQ) = 0. 

The bra-state equations were derived in the same spirit as equations (A4) and ( A 3  and are 
extremely long. They are not given here for reasons of space and we proceed directly to 
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the methods to verify these equations and the procedure used to solve them. As a check on 
the consistency of the equations, we may make use of the following observation. Consider 
the Hamiltonian functional HJUnc where 

(B5) Hfunc = (@I ?ek-SHeS 14) 

then 

However, it can be seen that 

Thus, in order to check the bra-state equations we apply these equations to the expressions 
that were derived for the ket- and bra-state coefficients. This was done for all the terms in 
the bra-stak equations using expressions like those given in equation (B7). The terms were 
found to match. 

In order to render these equations into a form that enables them to be Fourier 
transformed, we define new variables p and r as follows: 

6-38) 

and 
n E A , k  E B 

dnk = G+p, { ;,'E;,":; } . k = n + T + p , .  (B9) 

For the single spin-flip coefficients, we set 

c, = c  V n.  

Note that these definitions ensure that the bra-state coefficients satisfy the same symmetric 
conditions as the ket-state coefficients do in the SUBZsynimetric treatment. 

Bl .  Fourier transformation of the bra-state equations 

Now that we have derived the bra-state equations, we must set about solving them. This 
is done by rewriting the given equations using equations (BS)<BlO) and then Fourier 
transforming these equations as for the ket-state coefficients. To economize on space, we 
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proceed directly to the equations once they have been Fourier transformed. For exactly the 
same reasons that were given in the Fourier transformation of the ket-state coefficients, we 
define 5 so that ?, = rr+*, . 

We have set c = 0: this again reflects the coplanar nature of the system. Also, the set 
of Fourier-transformed bra-state equations for when n. k E A sublattice has the same linear 
dependence property as in the ket-state equations. Therefore, for the same reasons as given 
earlier, we may set pr=o = 0. Hence, the Fourier-transformed equation for when n, k Q A 
sublattice is 

o = 24p9 + zh [qq + ?;r; - 6i0] + - 4 8 ~  [pLqFqrq i ? 9 @ 9 ~ 9 ]  

-481 [ffqvq + pqvq -*I-*] - 4 8 h [ ? ; @ ; ~ ;  + aq?,"r;1 
+48h(3/N) [ h @ k d k  + p k e k r k ]  + 48h(3/N) [ f f k w k  + f fk?zk*ri]  

k k 

+48h(3/N) [pk@zrE + YLGiA;] (311) 
k 

and for when n E A, k E B the Fourier-transformed equation is 
3 
8 

0 = 24% - -AI?; - 4?&: + 2h [ p q r l  + ?,"A;] + 576h@0,i9 - 96h&,i0r; 

+96h(3/N)  [(Ykpk f 2&?:] r; - 4% [LYqFqA; -#- &?,"rq*] 
k 

-48~[?~6~r ' ,  + / 1 9 6 ; ~ ; ]  -4~h[?~@;r;+~,+~r;] ( B W  

O=CpLq.  0313) 

Note that the equations (B11) and (BIZ) are linear in the unknown variables ( p q }  and If9}, 
which means that these equations are much easier to solve numerically provided that the 
ket-state coefficients (aq) and {Gq) are known. 

together with the supplementary constraint 

9 
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